Measuring the Muon Content of Air Showers with IceTop

Javier G. Gonzalez

Before We Begin...

- IceTop detects the low energy muons far away from the shower axis (E > 200 MeV, r > 300 m).
- It is expected that the number of muons correlates with primary mass.
- The muon number is expected to scale roughly as a power of the primary energy:

$$N_{\mu}(r) \propto A \left(\frac{E}{A\epsilon_{\pi}}\right)^{p_{\mu}}$$

Mass number A, primary energy E, $p_{\mu} \sim 0.78$ (0.83 in Akeno)

- The muon lateral distribution can be parametrized in a standard (NKG-like) way.
 K. Greisen, Annu. Rev. Nucl. Sci. 1960.
- We will look at:
 - how one can estimate the muon lateral distribution function using IceTop,
 - the energy dependence of the muon density at a fixed reference radius for near-vertical events.

IceTop event reconstruction

Single-tank Signal Calibration

(VEM Calibration)

Example of a VEM calibration histogram for a particular tank, high-gain DOM in tank 61-A. IceCube Collaboration, ICRC 2011, Beijing

Tank Distribution Relative to Shower Axis

(
$$\theta < 6^{\circ}$$
, E~10 PeV)

HLC: Tanks with signal whose partner within a station also has a signal

SLC: Tanks with signal whose partner within a station does not have a signal

Note that SLC tanks are relatively few and far from the shower axis. Energy and direction reconstruction does not use SLC tanks at this time.

Charge-Distance to Axis Distribution

(only HLC)

- IceTop 73-station configuration (June 1, 2010-May 13, 2011)
- All HLC tanks,
- Tank selection according to agreement with angular reconstruction.
 Time residual less than 1000 ns
- Selected events with 8 stations or more (16 tanks or more)
- No containment requirement
- 18 zenith bins from 0 to 70 degrees.
 roughly equally spaced in sin(zenith)²
- 23 energy-bins from 1 to 200 PeV,
- 100 log(r) bins from 10 to 1000 m.
- Example of lateral charge histogram:
 - 10.0 PeV < E < 12.6 PeV</p>
 - 28.1 < zenith < 31.7 degrees

Charge-Distance to Axis Distribution

(HLC and SLC)

Detector Response to Muons

given a zenith angle and expected number of muons

Response to single muons obtained from Geant4 simulations of IceTop detectors

Few muons, fixed angle (~10°)

The response to n muons is the n-th order autoconvolution of the single-muon response

$$p(q|N_{\mu},\theta) = \sum_{n} \frac{p^{n}e^{-\langle N_{\mu}\rangle}}{n!} p(q|n,\theta)$$

Charge Distributions at Different Radii

Muon LDFs at 0 degrees

(HLC and SLC)

Two free parameters

(the rest are set to Greisen's values)

$$N_{\mu}(r) = N_{r_0} r^{-0.75} \left(\frac{320 \,\mathrm{m} + r}{320 \,\mathrm{m} + r_0} \right)^{-\gamma}$$

Muon LDF Parameters

N₆₀₀ scales geometrically as expected

$$\gamma_0 = p_0 + p_1 \log_{10}(E/PeV)$$

Deviations from a Power Law

- The resulting N₆₀₀ weighed by E^{0.83} to enhance the features. The choice of 0.83 comes from M. Nagano et al. J. Phys. G 10 (1984).
- Colored regions correspond to the location of spectral features in primary energy spectrum (see B. Ruzybayev's talk). Just for reference!

Conclusion

- With IceTop we can measure the average number of muons at large distances from the shower axis. We use 600 m as reference distance at this time.
- The dependence of muon number N₆₀₀ as a function of energy shows departures from a power law.
- We draw no conclusion regarding primary composition at this time.
- In order to make quantitative statements regarding the attenuation of the muon component, its zenith angle dependence, and its relation to primary composition, a new reconstruction procedure is being developed.
- The extent to which we can estimate the number of muons event by event is under study.
- · It is perhaps worth considering the use of this technique in similar air shower arrays.

Defining a Radial Cut

pHLC: The probability that the partner of a given tank with signal also has a signal.

It can be determined from data (from slide 4) and does not to depend strongly on zenith angle, only on s₁₂₅.

r/m

Lateral HLC Probability

